Endomorphisme ou matrice diagonalisable

Pour déterminer dans la pratique si un endomorphisme d'un **K**-espace vectoriel de type fini ou une matrice de $M_n(\mathbf{K})$ est diagonalisable on peut procéder de la façon suivante :

Actions	Outils
Calculer le polynôme caractéristique.	Calcul d'un déterminant dépendant d'un
	paramètre en le factorisant.
Déterminer ses racines dans K et leur ordre de multiplicité.	Factorisation d'un polynôme en des
Décider si le polynôme caractéristique est ou non scindé	polynômes à coefficients dans K .
dans K.	
Si la réponse est non, s'arrêter.	La condition nécessaire et suffisante ^(*)
Si la réponse est oui, continuer.	de diagonalisation faisant intervenir le
	polynôme caractéristique.
Chercher la dimension des sous-espaces propres relatifs	Résolution de systèmes linéaires par la
aux valeurs propres multiples s'il y en a (on sait d'avance	méthode du Pivot de Gauss (on sait
que la dimension des sous-espaces propres relatifs aux	d'avance que les systèmes considérés ne
valeurs propres simples est égale à 1).	sont pas de Cramer).
Dire si l'endomorphisme ou la matrice est diagonalisable	La condition nécessaire et suffisante ^(*)
en utilisant le théorème.	de diagonalisation faisant intervenir le
	polynôme caractéristique.
Si l'endomorphisme ou la matrice est diagonalisable,	Résolution de systèmes linéaires par la
déterminer une base de vecteurs propres.	méthode du Pivot de Gauss (on sait
Pour cela il suffit d'avoir une base de chacun des sous-	d'avance que les systèmes considérés ne
espaces propres. En effet, leur somme est directe et égale à	sont pas de Cramer).
E, donc la réunion de ces bases est une base de l'espace E.	
En fait à ce stade il ne reste plus qu'à chercher une base	
pour les racines simples du polynôme caractéristique s'il y	
en a.	
	1: 1: 11 1 1 1

L'étude est terminée : si l'endomorphisme (ou la matrice) est diagonalisable on a une base de vecteurs propres de f ou une matrice inversible P et une matrice diagonale D telle que $M = PDP^{-1}$.

(*) Théorème : condition nécessaire et suffisante de diagonalisation faisant intervenir le polynôme caractéristique

Soit f un endomorphisme d'un K-espace vectoriel E de dimension n, (ou M une matrice carrée d'ordre n à coefficients dans K).

Pour que f (respectivement M) soit diagonalisable, il faut et il suffit que les deux conditions suivantes soient satisfaites :

- (i) Le polynôme caractéristique de f (respectivement de M) se factorise en un produit de polynômes du premier degré (non nécessairement distincts) à coefficients dans K.
- (ii) Pour chaque valeur propre, la dimension du sous-espace propre associé **est égale** à son ordre de multiplicité en tant que racine du polynôme caractéristique.