Facteur stérique
Dans ce qui précède, on a assimilé les molécules a de simples sphères de diamètres \(d_\textrm A\) et \(d_\textrm B\).
En fait, ceci n'est vrai que pour des atomes ou des ions monoatomiques.
Dans tous les autres cas, il faudrait tenir compte de leur forme réelle pour pouvoir calculer avec une meilleure approximation la section de choc \(\sigma\) entre les deux molécules. Cette section de choc représente en quelque sorte la surface effective moyenne de rencontre des molécules.
En pratique, même si on estime convenablement la section de choc entre deux molécules en tenant compte de leur forme, ce qu'il n'est possible de faire que dans des cas simples, les coefficients de vitesse estimés théoriquement par la relation
\(\mathbf{k=\sigma\Big(\frac{8.k.T}{\pi.\mu}\Big)^{\frac12}.\exp\Big(\frac{-E_a}{R.T}\Big)}\)
ont généralement beaucoup plus grands que les valeurs déterminées expérimentalement. Cela s'interprète en considérant que, même s'ils ont une énergie suffisante, tous les chocs ne conduisent pas nécessairement la transformation. On dit que tous les chocs ne sont pas efficaces.
Pour tenir compte du fait que seuls les chocs se produisant suivant la bonne direction et avec la bonne orientation peuvent conduire à la transformation chimique, on définit la section de choc efficace \(\mathbf{\sigma^* = P.\sigma}\) , \(P\) étant un facteur de proportionnalité plus petit que 1. Ce facteur est parfois appelé facteur de probabilité ou facteur d'Hinshelwood du nom du physico-chimiste anglais Sir Cyril Norman d'Hinshelwood qui l'a introduit dans les années 1935, prix Nobel 1956.
Cyril Norman Hinshelwood est un physico-chimiste britannique né à Londres le 19 juin 1897 et mort à Londres en 1967. Il fit ses études à l'université d'Oxford et y obtint son doctorat avant d'y être nommé professeur en 1937. Hinshelwood reçut en 1956 le prix Nobel de chimie (qu'il partagea avec Nikolay Nikolaevich Semenov) pour ses études cinétiques des réactions en phase gazeuse. Il fut anobli en 1948 et, président de la Royal Society de 1955 à 1960.
L'expression théorique du coefficient de vitesse s'écrit donc : \(\mathbf{k=\frac{k_B.T}{h}.K_C^\neq}\)
Expression que l'on identifie facilement avec la loi empirique d'Arrhenius \(\mathbf{k=A.\exp\Big(\frac{-E_a}{R.T}\Big)}\)
En pratique, on détermine le facteur de proportionnalité \(P\) en comparant le terme théorique \(\mathbf{\sigma\Big(\frac{8.k.T}{\pi.\mu}\Big)^{\frac12}}\) avec la valeur du facteur préexponentiel \(A\) de la loi d'Arrhenius déterminée expérimentalement.
L'étude expérimentale de la réaction aux environs de 600 K considérée ici comme exemple :
\(\mathbf{\textrm H_2+\textrm C_2\textrm H_4\to\textrm C_2\textrm H_6}\)
donne les valeurs suivantes : \(\mathbf{A = \textrm{1,2}.10^6 \textrm{L.mol}^{-1}\textrm{.s}^{-1}}\) et \(\mathbf{E_a = 180 \textrm{kJ.mol}^{-1}}\) .
La valeur théorique du terme \(\mathbf{\sigma\Big(\frac{8.k.T}{\pi.\mu}\Big)^{\frac12}}\) est 7,3.1011 L mol-1.s-1, d'où \(P = \textrm{1,7}.10^{-6}\) . Cette valeur est très faible.
Toutes les réactions n'ont pas des valeurs aussi faibles du facteur stérique.
Par exemple, la réaction \(\mathbf{2.\textrm{NO}_2\to 2.\textrm{NO} + \textrm O_2}\) a un facteur stérique de l'ordre de 6.10-2 .
Il existe même des réactions pour lesquelles le facteur stérique est proche de 1,
c'est le cas par exemple de \(\mathbf{\textrm C_2\textrm H_5\textrm{Br} + \textrm{HO}^- \to\textrm C_2\textrm H_5\textrm{OH} + \textrm{Br}^-}\) .
Pour voir la Théorie des processus pseudo monomoléculaires de Lindemann, cliquez ici[1].