Déterminons \sin A + \sin B :
\begin{array}{lll}\sin A + \sin B &= 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\ & = 2 \sin \left(\frac{\pi - C}{2}\right) \cos \frac{A-B}{2}\end{array}
\sin A + \sin B = 2 \cos \frac{C}{2} \cos \frac{A-B}{2} (2pts)
Valeur de k
Sachant que \sin C = 2 \sin \frac{C}{2}\cos\frac{C}{2} (1pt) , nous obtenons
\sin A + \sin B - \sin C = 2 \cos \frac{C}{2} \left(\cos \frac{A-B}{2} - \sin\frac{C}{2}\right)
mais \sin \frac{C}{2} = \sin\left(\frac{\pi}{2} - \frac{A+B}{2}\right) = \cos \frac{A+B}{2} (1pt)
et \left(\cos \frac{A-B}{2} - \cos \frac{A+B}{2} \right) = 2 \sin \frac{A}{2} \sin \frac{B}{2}
d'où
\sin A + \sin B - \sin C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}
et k = 4 (2pts)