Question 2
Durée : 10 mn
Note maximale : 5
Question
Calculer la primitive \(I_2=\int\cos^3\theta\sin^2\theta d \theta\)
Solution
Sachant que \(\cos^3\theta = \cos^2\theta \cos\theta = (1 - \sin^2\theta ) \cos\theta\)
nous avons \(I_2=\int(1-\sin^2\theta )\sin^2\theta \cos\theta d\theta~~\color{red}\text{ (2 pts)}\)
d'où
\(I_2=\int\sin^2\theta\cos\theta d\theta-\int\sin^4\theta\cos\theta d \theta\)
\(\color{blue}I_2=\frac13\sin^3\theta-\frac15\sin^5\theta+C~~\color{red}\text{ (3 pts)}\)