Définition

Il faut noter immédiatement que la notion de matrice inversible n'a de sens que pour les matrices carrées.

Définition

Soit une matrice carrée à lignes et colonnes. On dit qu'elle est inversible s'il existe une matrice appartenant à telle que .

Le mot " existe " qui apparaît dans la définition est essentiel : en effet il donne à penser que pour certaines matrices, cela peut être vrai, pour d'autres non.

Nous allons illustrer cette remarque par deux exemples.

Notons que, pour l'instant, nous n'avons pas d'autre outil que la définition pour savoir si une matrice est inversible ou non. On est donc amené, pour répondre à cette question, à la résolution d'un système. Cela peut donner lieu à de très gros calculs puisque si les matrices considérées sont d'ordre , on est conduit à résoudre un système à équations dans .

Légende :
Apprendre
S'évaluer
S'exercer
Observer
Simuler
Réalisé avec Scenari (nouvelle fenêtre)