Question 2

Durée : 4 mn

Note maximale : 4

Question

Déterminer la dimension et l'unité de base de la constante de Boltzmann \(k\) qui intervient, en théorie cinétique des gaz monoatomiques dans l'expression \(\frac{1}{2}m u^{2} = \frac{3}{2} k T\) (\(m\) masse d'une molécule de gaz, \(u\) vitesse quadratique moyenne, \(T\) température du gaz).

Solution

L'expression de la définition de la température thermodynamique du gaz conduit à : \(k= \frac{1}{3} m \frac{u^{2}}{T}\)

et \(\dim~ k =\dim~ (\textrm{masse}) \times \dim~ (\textrm{vitesse})^{2}/\dim~ (\textrm{temp\'erature})\)

d'où \(\dim~ k = M(LT^{-1})^{2}/\theta = L^{2}MT^{-2}\theta^{-1}\) ( 3 points )

et

unités de \(k : \textrm{kg.m}^{2}.\textrm{s}^{-2}.\textrm{K}^{-1}\) ( 1 point )