Ce qu'il faut retenir :
Origine au centre optique | \(C = \frac{1}{f'} = (n-1)~(\frac{1}{R_{1}} -\frac{1}{R_{2}})\) \(-\frac{1}{p} + \frac{1}{p'} = \frac{1}{f'}\) \(\gamma = \frac{p'}{p}\) |
Origines aux foyers | \(x.x' = -f'^{2}\) \(\gamma = \frac{f'}{x} = - \frac{x'}{f'}\) |
Formule de Lagrange-Helholtz | \(\alpha . \overline{AB} = \alpha' . \overline{A'B'}\) \(g=\gamma^{2}\) |